Monday 27.4.20	Monday 27.4.20
opposite angles. These lines indicate that the two angles are This means that they will be the same size angle.	Here is a triangle. Q1 What kind of triangle is it? How do you know? Isosceles triangle Q2 Workout the size of angle m. 75°
Monday 27.4.20 Q3 Complete the sentence to describe the angles in this type of triangle: In an isosceles triangle, the angles add up to $\mathbf{1 8 0}^{\circ}$. Two of these angles will be the same.	Monday 27.4.20 Q4 Your knowledge of triangles that you learnt last week should help with this question. Are these statements true or false? Every isosceles triangle is equilateral False Every equilateral triangle is an isosceles True A right-angled triangle can be equilateral False A right-angles triangle can be an isosceles True
Tuesday 28.4.20 Q1 Two angles in a triangle are 43° and 74° Is the triangle isosceles? No Show your working out. The missing angle is 63。 so there is not a pair of angles. $43^{\circ}+74^{\circ}=117^{\circ} \quad 180^{\circ}-117^{\circ}=63^{\circ}$	Tuesday 28.4.20 Q2 One angle in an isosceles triangle is 29°. What could the other angle be? Give two possible answers. $\begin{array}{ll} 29^{\circ} \text { and } 122^{\circ}=151^{\circ} & +29^{\circ}=180^{\circ} \\ 75.5^{\circ} \text { and } 75.5^{\circ}=151^{\circ} & +29^{\circ}=180^{\circ} \end{array}$ Each answer has a pair of angles that are the same.
Tuesday 28.4.20 Q3 Two isosceles triangles are joined together to form a kite. Work out the size of the unknown angles. (Think about opposite angles and the properties of an isosceles to help you.) $\begin{aligned} & W=38^{\circ} \\ & X=56^{\circ} \\ & Y=38^{\circ} \\ & Z=56^{\circ} \end{aligned}$	Tuesday 28.4.20 Q4 Teddy is drawing a quadrilateral. My quadrilateral has exactly three right-angles. Is Teddy's quadrilateral possible? No Explain your answer. $\mathbf{3 \times 9 0 = 2 7 0 \quad 3 6 0 - 2 7 0 = 9 0}$ If three angles were right angles, the third would also have to be a right angle.

